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We present a scheme to controllably improve the accuracy of tight-binding Hamiltonian matrices
derived by projecting the solutions of plane-wave ab initio calculations on atomic orbital basis
sets. By systematically increasing the completeness of the basis set of atomic orbitals, we are
able to optimize the quality of the band structure interpolation over wide energy ranges including
unoccupied states. This methodology is applied to the case of interlayer and image states, which
appear several eV above the Fermi level in materials with large interstitial regions or surfaces such
as graphite and graphene. Due to their spatial localization in the empty regions inside or outside of
the system, these states have been inaccessible to traditional tight-binding models and even to ab
initio calculations with atom-centered basis functions.

I. INTRODUCTION

The generation of highly accurate tight-binding mod-
els for arbitrary systems is a long-lasting problem that
has enormous implications in the development of effi-
cient tools for the study of the electronic structure of
molecules and solids,1,2 and for applications in acceler-
ated materials development.3 Tight-binding methods have
evolved to include total energy calculations4–6 and self-
consistent approaches7–9 greatly extending the applica-
bility. With the introduction of ab initio tight-binding
Hamiltonians the accuracy of many of these methods has
seen a substantial improvement. However, the best rep-
resentations still rely on ad hoc basis sets that need to
be iteratively optimized10–12 and are computationally ex-
pensive. In recent papers, we have introduced an effi-
cient scheme to construct optimal tight-binding Hamil-
tonians projecting the Bloch states obtained from plane-
wave (PW) Density Functional Theory calculations onto
atomic orbitals derived directly from the generation of the
atomic pseudopotentials.13–15 In this scheme, the energy
range in which the TB Hamiltonian reproduces the origi-
nal states is limited by the finite number of pseudo atomic
orbitals (PAO) that comprise the minimal basis set. As
such, only a few unoccupied bands are typically well rep-
resented and an accurate description of the conduction
states is impossible beyond a few eV. If more conduction
states are needed, the basis set needs to be systematically
extended.

In this work, we propose a procedure that extends the
validity of the TB representation of the band structure to
electronic states far above the Fermi level. This novel ap-
proach is based on the Projector Augmented Wave (PAW)
formalism and involves several atomic orbital (AO) for
each angular momentum that are directly computed from
the all electron atomic potential.

The paper is organized as follows: in section II.A we
introduce the PAW formalism; since the PAW method
requires smoother AO functions, i.e. the PAOs, the
pseudization process is presented in Section II.B; in Sec.
II.C we briefly summarize the projection, filtering and
shifting procedure to generate accurate Hamiltonian ma-
trices as originally discussed in Ref. 13 and 14; in Sec.
II.D we discuss the convergence properties of the unoccu-
pied Kohn-Sham states and their dependence on the basis
set representation; finally, in Section III we present two
examples where we demonstrate the effectiveness of our
enhanced scheme by reproducing the interlayer states of
graphite and the image states of graphene in a wide energy
range.

II. METHODOLOGY

A. The PAW method

Density-functional theory (DFT) in combination with
the plane-wave pseudopotential (PP) formalism is one of
the most common method to derive the electronic struc-
ture of molecules and solids. Pseudopotentials are con-
structed to remove core electrons from the Hamiltonian
and to reduce drastically the number of plane waves
that would be otherwise needed to represent the diver-
gent Coulomb potential close to the nucleus. In addition,
pseudo-wavefunctions are smooth in the region close to the
nuclei because they don’t need to be orthogonalized to the
core orbitals. The drawback of the PP method is that all
the details on the wavefunctions within a specific distance
from the nucleus (the atomic sphere) are lost. This is im-
portant when it comes to calculate, for instance, magnetic
resonance parameters or core emission spectroscopies.16–18

In that regard, the PAW method19 allows reconstruct-
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ing the full nodal structure of the wavefunctions near the
ions. The basic idea is to “augment” the pseudo wave-
functions with a set of pseudo partial waves |ϕ̃nα〉, which
are localized functions centered at position Rα for each
atom α (n is a composite index for the quantum numbers
n, l,m). This augmentation procedure is achieved through

the application of the T̂ operator to the pseudo wavefunc-
tions, |ψ̃i〉, in order to obtain the all-electron wavefunc-

tions, |ψi〉 = T̂ |ψ̃i〉. The composite index i indicates the
band state and wavevector k of the Bloch wave. Such an
operator is defined as

T̂ = 1̂ +
∑
α

T̂α,

T̂α =
∑
n

(|ϕnα〉 − |ϕ̃nα〉) 〈p̃nα| (1)

where |ϕnα〉 are the all-electron partial waves and |ϕ̃nα〉
are the corresponding pseudo partial waves. The PAW
method is grounded on the assumption of completeness of
the basis of partial waves in Eq. 1: the wavefunction can be
expanded in terms of partial waves inside the augmenta-
tion sphere. In practice, in order to enforce a high degree
of completeness one has to include more than one par-
tial wave per angular momentum (typically two or three),
where the first corresponds to the bound energy state and
the others to unbound states of positive energy. The pro-
jectors |p̃nα〉 are local functions centered at Rα and vanish-
ing beyond a certain cutoff radius rcα; they are determined
such that:

〈p̃nα|ϕ̃n
′
α 〉 = δn,n′ , for |r−Rα| < rcα. (2)

The inclusion of multiple partial waves enables the high
transferability and accuracy of the PAW potentials, which
are defined by a given set of partial waves, projectors and
cutoff radii. Libraries of PAW datasets for almost all el-
ements in the periodic table are available: PSlibrary20,
GBRV21, JTH22, GPAW23, VASP24, ATOMPAW25, and
GIPAW, used in the calculation of NMR shifts26.

B. Generation of the PAO basis sets

For given energies εn, the all-electron atomic-orbital
functions |φnα〉 are obtained by solving the Schrödinger
equation: [

−1

2
∇2 + V AE

α

]
|φnα〉 = εn|φnα〉, (3)

where V AE
α is the screened all-electron potential found by

self-consistently solving the Schrödinger equation for an
isolated atom in a given reference electronic configuration.
The corresponding smooth atomic-orbitals |φ̃n〉 (dropping
the atom index α for simplicity) are obtained by solving

the implicit equation: |φn〉 = T̂ |φ̃n〉, that is:

φ̃n(r) = φn(r)−
∑
m

[ϕm(r)− ϕ̃m(r)]Cm,n, (4)

where Cm,n = 〈p̃m|φ̃n〉 =
∫ rc
0
p̃m(r)∗φ̃n(r)r2dr. No-

tice that we have included only the radial component of
the functions, i.e. without the angular part, given by the
spherical harmonics Ylm.

Eq. (4) has the form of a Fredholm equation of the sec-
ond kind27 which can be reduced to a matrix equation
defining C = (I + A)−1B where I, A and B are iden-
tity, square and rectangular matrices, respectively, with

elements Ak,h =
∫ rc
0
p̃k(r)∗(ϕh(r) − ϕ̃h(r))r2dr, Bk,m =∫ rc

0
p̃k(r)∗φm(r)r2dr. The indices k and h runs over the

set of projectors and partial waves that define the PAW
dataset, respectively, while the indices n,m run over the
full set of radial wavefunctions from Eq. (3).

We have applied the procedure discussed above to de-
rive sets of smooth AOs, i.e. the PAOs φ̃n. In a strict
sense, while the PAOs are the auxiliary functions involved
in the PAW method, the AOs φn are the functions that
constitute the basis set for the tight binding models. Fig. 1
shows a comparison of the radial parts of the all-electron
vs. the pseudo atomic orbitals of carbon (the s and s′ func-
tions of PAO3 given in Table I) using the PAW potential
C.pbe-n-kjpaw psl.1.0.0.UPF from Ref. 20. The PAO
functions are smoother that the all-electron functions in-
side the cutoff radius of 1.4 aB , while, by construction,
both are identical outside the cutoff radius.
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FIG. 1. All-electron and pseudo-atomic functions for the {s, s′}
components of the PAO3 set. The parameters used to compute
the pseudo-atomic orbitals are defined by the same PAW data
set used in the DFT calculation.

One point of strength of this approach is that we can
construct PAO sets of increasing size and completeness.
The sets can include multiple functions for each {lm}
channel which correspond to different energy parameters
εn (see Table I). The first choice for the values of εn are
the eigenenergies of the bound states (εn < 0) of the iso-
lated atom. These orbitals form the minimal set PAO1

which is equivalent to the single-zeta basis used in quan-
tum chemistry, e.g. {s, p} functions for carbon, composed
of M=4 functions.

Hamann28 showed that positive-energy (scattering)
states can be employed to improve the accuracy of norm
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TABLE I. Energy parameters (in Ry) that define the functions
used in the construction of the PAO sets {φ̃n(r)} for carbon
via Eq. 3.

set εs εp εd εs′ εp′ εs′′ εp′′

PAO1 -1.01 -0.39 – – – – –
PAO2 -1.01 -0.39 0.05 – – – –
PAO3 -1.01 -0.39 0.05 0.05 0.05 – –
PAO4 -1.01 -0.39 0.20 0.20 0.20 0.4 0.4

conserving pseudopotentials. Within our approach, we
augment the minimal PAO1 set with scattering states of
energies εn > 0 (these energy parameters can be chosen
arbitrarily). The PAO2 set is of single-zeta-polarized qual-
ity that includes polarization functions with higher an-
gular momentum, lmax + 1, i.e. {s, p, d}, M=9. PAO3

is of double-zeta-polarized quality, i.e. {s, s′, p, p′, d},
M=13, and PAO4 triples the number of minimal basis
functions and includes additional polarization functions,
i.e. {s, s′, s′′, p, p′, p′′, d}, M=17, thus, it is of triple-zeta-
polarized quality.

C. Building the TB Hamiltonian matrices

Accurate TB Hamiltonian matrices can be built from
the direct projection of the Kohn-Sham (KS) Bloch states
|ψnk〉 onto a chosen PAO set as discussed extensively in
Ref. 13 and 14. This procedure is satisfactory when Bloch
states, that project well on the selected AO basis set, are
kept and states that do not project well are eliminated,
i.e., filtering. In this process the crucial quantities that
quantify the accuracy of the basis are the projectabilities
pnk = 〈ψnk|P̂ |ψnk〉 ≥ 0 (P̂ is the operator that projects
onto the space of the PAO basis set, as defined in Ref. 14 )
which indicate the representability of a Bloch state |ψnk〉
on the chosen PAO set. Maximum projectability, pnk = 1,
indicates that the particular Bloch state can be perfectly
represented in the chosen PAO set; contrarily, pnk ≈ 0 in-
dicates that the PAO set is insufficient and should be aug-
mented. Once the Bloch states with good projectabilities
have been identified, the TB Hamiltonian is constructed
as:

H(k) = AEA† + κ
(
I −A

(
A†A

)−1
A†
)
. (5)

where E is the diagonal matrix of KS eigenenergies and
A is the matrix of coefficients obtained from projecting
the Bloch wavefunctions onto the PAO set (See Ref. 14.)
Since the filtering procedure introduces a null space, the
parameter κ is used to shift all the unphysical solutions
outside a given energy range of interest.

The real-space TB matrix, H(R), between the central
and the neighboring unit cell at lattice vector R is ob-
tained via Fourier transform:

H(R) =
1

NV

∑
k

e−ik·RH(k) , (6)

where NV is the number of k points in the reciprocal unit
cell. Using these matrices, one can calculate the inter-
polated TB band structure, for any k, using the inverse
Fourier transform.

D. TB representation of the unoccupied bands

When a linear combination of AOs (LCAO) are used as
basis sets in DFT based methods, the unoccupied bands
tend to substantially depend upon basis set size. As an
illustration of the above argument, we have computed the
band structure of graphite and graphene using both ap-
proaches. All PW- and LCAO-DFT calculations presented
in this work were performed using the software packages
quantum espresso29 or openmx30 using the Perdew-
Burke-Ernzerhof (PBE)31 exchange and correlation func-
tional. The PW calculations use the PAW pseudopoten-
tial C.pbe-n-kjpaw psl.1.0.0.UPF from the PSlibrary20

and a kinetic energy cutoff energy of 40 Ry. The LCAO-
DFT calculations use norm conserving pseudopotentials
and the optimized AO basis sets from the openmx pseu-
dopotential database32, with a cutoff radius for all carbon
basis functions of 7 aB . The basis set used for the “empty
atoms” contains two s, two p, two d, and one f function,
all with a cutoff of 13 aB .

The first three panels in Figs. 2 and 3 show the LCAO-
DFT band structures for graphite and graphene, respec-
tively, calculated using AO basis sets of increasing quality,
taken from a public database32: single zeta (SZ), dou-
ble zeta with polarization (DZP), and triple zeta with
double polarization (TZDP). Under the same approxima-
tion to the exchange-correlation functional, calculations
using a well converged plane wave (PW) basis set (fourth
panel) reproduce the unoccupied states systematically bet-
ter than the AO basis sets.
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FIG. 2. Band structure of graphite using atomic-orbital (at
the single-zeta, double-zeta polarized, and triple-zeta doubly-
polarized level) and well converged plane-wave basis sets.

Not surprisingly, a minimal basis set such as SZ fails to
reproduce not only the unoccupied but also the occupied
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bands of graphite and graphene. The SZ calculation com-
pletely misses the lowest conduction band at Γ, as seen in
the first panel in Figs. 2 and 3. DZP basis sets are gen-
erally considered satisfactory to reproduce ground-state
properties, reaching close to chemical accuracy.33 Indeed,
we find that all occupied states are well converged at the
DZP level; however, it offers little improvement to the un-
occupied bands. Only when the much larger TZDP set is
used, the unoccupied bands start to qualitatively match
the fully converged PW results.

Despite the deficiencies of standard implementation of
DFT, single particle KS eigenstates (occupied and un-
occupied) are often needed, for instance, as the starting
point for more refined calculation of the excited states
(time-dependent DFT,34 density-functional perturbation
theory,35 many-body perturbation theory GW,36 coupled-
cluster theory,37 etc.), thus TB Hamiltonians that are ex-
pressed in small AO basis sets but that can still deliver
the accuracy of the converged PW DFT results, especially
for the unoccupied states, are a valuable tool for the study
of novel materials and further development of theoretical
methods.
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FIG. 3. Band structure of graphene using atomic-orbital (at
the single-zeta, double-zeta polarized, and triple-zeta doubly-
polarized level) and well converged plane-wave basis sets. The
first three panels use atomic-orbital-like sets: SZ, TZDP, and
DZP with empty atoms from Ref. 32.

III. APPLICATIONS

For most crystalline materials, minimal PAO sets (of SZ
or SZP quality) are sufficient for constructing TB Hamilto-
nians that are describing accurately the band structure up
to ∼ 2 eV above the Fermi energy.13,14 However, materi-
als containing extended interstitial regions tend to exhibit
“interlayer states” usually located several electron-volts
above the Fermi energy. Similarly, the description of “im-
age states” in metallic surfaces also requires a larger en-
ergy range in the unoccupied bands. Here, we discuss two
prototypical cases, graphite and graphene, to demonstrate
the effectiveness of our augmented PAO basis sets and TB

scheme for the treatment of interlayer and image states,
which have been out of reach of traditional parameterized
TB models so far.

A. Graphite

The first step toward quantifying the quality of LCAO
basis set involves a detailed analysis of the projectabilities.
As mentioned before we construct PAO sets of increasing
“completeness” and derived an appropriate TB model in-
tended to interpolate the fully converged PW band struc-
ture. In Fig. 4 we discriminate between bands with mod-
erate to high projectabilities (plotted in red) from bands
with lower projectabilities (plotted in blue.) See color
scale in Fig. 6. The first panel shows the projectabili-
ties on the PAO1 set. There are two discernible groups
of bands: the states with predominant {s, p} character (in
red) and the parabolic bands near Γ (in blue). Expect-
edly, the high projectabilities bands qualitatively resem-
ble the LCAO-DFT calculation with SZ basis in Fig. 2.
Conversely, the low projectability bands (in blue), which
can not be well represented on the minimal {s, p} basis,
are absent in Fig. 2 (SZ.) Interestingly, those bands cor-
respond to the so-called interlayer states of graphite38–40,
which are strongly-dispersed unoccupied states located in-
between the graphitic planes (see Fig. 3c in Ref. 40.)

Interlayer states are characteristic of materials with in-
terstitial hollow regions,41,42 layered structures,43 and/or
reduced dimensionality such as carbon nanotubes,44,45

C60,46 etc. Naturally, atom-centered basis functions are
inappropriate to describe states that extend to the in-
terstitial and/or vacuum regions, whereas PW basis are
particularly well suited for this.47 This is reflected in the
pronounced discrepancy between unoccupied eigenener-
gies calculated using PW and AO basis sets.41,42 The in-
terlayer states of graphite are not captured with commonly
used AO basis sets48,49 such as DZP, as seen in Fig. 2.

Our PAW-based procedure allows a systematic exten-
sion of the PAO sets (see Table I) to distill TB Hamiltoni-
ans that capture the details of the band structure includ-
ing “interlayer states”. The performance of each PAO set
is assessed by determining its energy range of good pro-
jectability for a particular material, which in turn leads
to a TB model that is highly accurate within the same
energy range.

The performance of the four PAO sets in Table I in
terms of projectabilities are shown in Fig. 5. We choose
the threshold of pnk ≥ 0.95 to determine the target en-
ergy range of accuracy. The performance of the PAO1

set (blue line) sharply declines above 3.3 eV due to the
presence of parabolic bands that do not project well on
the small LCAO basis. The TB model using this set is
accurate only up to 3.3 eV. The larger spatial range of
the {s′, p′} functions added in PAO2 facilitates the rep-
resentation of the interlayer states closer to the graphitic
planes, yielding a noticeable increase in the projectabili-
ties with respect to PAO1 over the entire energy range.
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FIG. 4. (Color online) Projectability pnk, in color scale, of Bloch states ψnk of graphite on the PAO1, PAO2, and PAO3 sets. The
fourth panel shows the interpolated band structure in green obtained from the TB Hamiltonians built on the PAO3, superimposed
to the plane-wave band structure. The color bar is shown in Fig. 6.

This is also observed in the second panel in Fig. 4 where
most of the blue bands switched to red; the interlayer
states with wave-vector component perpendicular to the
graphitic planes, those in the Γ–A direction, are still of low
projectability. The wavefunction of perpendicular Bloch
states are primarily localized at the center of the intersti-
tial space, the farthest from the planes, and the {s′, p′}
functions are still insufficient to fully capture them; this is
reflected by the oscillations of the green line in the 3.3–7
eV range in Fig. 5. When we augment the basis set with d
functions (PAO3) the range of high projectability increases
up to 7.2 eV above the Fermi level. PAO4 (light blue line)
further extends that range up to 10.8 eV. From the above
results it is clear that the upper bound of the energy range
of high-projectability, and consequently the range of accu-
racy of the TB matrices, can be systematically increased
in this way.
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FIG. 5. (Color online) Projectability of the Bloch states ψnk

of graphite onto the four PAO sets defined in Table I. The
plot shows the minimum value of projectability for each bin of
a discretized energy grid. The dotted line indicates the pro-
jectability threshold of 0.95. All k points in the reciprocal unit
cell are included in the calculation.

The interpolated TB band structure constructed using
the PAO3 set is shown in green in Fig. 4. An excellent
agreement with the PW-DFT bands up to 7.2 eV above
the Fermi level is observed, as expected from the energy

range of high projectabilities deduced from Fig. 5.

B. Graphene
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FIG. 6. (Color online) Projectabilities of the Bloch states of
graphene on the PAO1 and PAO3 sets. The interpolated TB
band structure, computed using the PAO3 basis set, is shown
in green on the third panel superimposed to the PW bands.

The high energy electronic bands of graphene are
characterized by the presence of image states. Im-
age states give rise to superconductivity in metal-doped
graphite.40,50 Similarly, they play a critical role in sev-
eral phenomena such as the functionalization of graphene,
the adsorption of oxygenated moieties and hydrogen, the
formation of defects,51,52 and the ‘finger-print’ peaks in
the X-ray absorption spectra found in the same energy
region.53–58 Image states have also been shown to medi-
ate electron tunneling in graphene.59 The importance of
TB models that reproduce well “interlayer” and “image
states” cannot be underestimated especially when design-
ing devices and interpreting experiments.
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Image states in graphene follow60 double Rydberg se-
ries n± and, expectedly, have low projectability on PAO1

(blue lines in the first panel of Fig. 6). The two lowest
unoccupied bands, parabolic at Γ, are the first states of
the series, denoted as 1+ and 1−. The third lowest un-
occupied band corresponds to the state 2+. Increasing
the projectability of the image-state bands by augmenting
the basis set is difficult for the particular case of graphene.
The projectabilities improve with higher PAO sets, but fail
to reach the threshold of 0.95. As seen in the second panel,
bands 1+ and 1− can reach moderately high projectability
(∼ 0.8 at Γ) with PAO3, in sharp contrast, however, band
2+ (light blue) still exhibits low projectability. This be-
havior is due to the spatial distribution of the image states.
Indeed, the wavefunctions of 1+ and 1− around Γ have a
component that is localized in the graphene plane form-
ing σ and π hybridizations, respectively (see also Fig. 3b
in Ref. 60). This component can be partially accounted
for with the inclusion of {s′, p′} (and to a lesser extent, d)
functions in PAO3, leading to the observed increase of pro-
jectabilities in the second panel with respect to the first in
Fig. 6. The other component of the wavefunctions 1+ and
1− is more localized in the vacuum region60 and, thus, is
not captured by the s′ and p′ functions. Band 1− loses
its dispersion and becomes flat around K, where a marked
reduction in projectability in also seen (blue segment at
∼ 10.6 eV in the second panel.) This happens because
around K the wavefunction of 1− loses its in-plane π-like
component and consequently can no longer be expanded
with the {s′, p′} functions (see also the charge density plot
in Fig. 3a in Ref. 61). On the other hand, the wavefunction
2+ is fully localized in the vacuum region with the position
of the maximum electron density away from the graphene
plane60. Contrary to 1±, it has no in-plane component
at Γ and, thus, cannot be represented just by adding ba-
sis functions that are centered in the plane; therefore, 2+

exhibits low projectability on the PAO3 set.
This is corroborated by examining the LCAO-DFT

bands, shown in the first three panels in Fig. 3. Even with
the large TZDP basis set (second panel), the band struc-
ture completely misses the parabolic image state bands
obtained when using the PW basis. The image states are
reached only after extending the DZP with empty-atom
(EA) basis functions centered at 2.8 Å above and below
the graphene sheet. Although the DZP-EA set is too ex-
pensive for practical calculations, it is observed that the

bands (third panel) reach qualitative agreement to the PW
solution (fourth panel).

As seen in the third panel in Fig. 6, the TB Hamiltonian
generated using the PAO3 set is able to correctly repro-
duce the band structure (in green) up to the two lowest
parabolic bands 1+ and 1−. Our method supersedes pa-
rameterized tight-binding schemes that are only suitable
in the vicinity of the Dirac point. The TB band structure
shown here achieves higher accuracy than even the LCAO-
DFT result, and with a less expensive basis set. We expect
that extending the PAO set with empty-atom functions lo-
cated off plane will noticeably increase the projectabilities
of the interlayer states 1± and 2+ above the threshold of
0.95. We leave this for future investigation.

IV. SUMMARY AND CONCLUSIONS

We presented a scheme to extend PAO basis sets to
systematically increase the level of completeness of tight-
binding representations obtained from plane waves ab ini-
tio calculations. While minimal PAO sets (of SZ or SZP
quality) can be sufficient for generating TB Hamiltonian
matrices accurate up to ∼ 2 eV above the Fermi level for
most materials, we have shown that enhanced PAO basis
sets, containing both negative and positive energy atomic-
orbital functions, can controllably increase the energy win-
dow in which the TB model is faithfully representing the
details of the bands. Results for graphite and graphene,
notably very difficult systems to represent in a TB scheme,
demonstrate the accuracy and effectiveness of the method.
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